날짜 : 2023-06-19 07:27
주제 :GeometryComplexKahlerEinsteinBergman
Abstract
본 강연에서는 푸앙카레 원반의 상수곡률 계랑을 일반차원 복소다양체 위의 켈러 계량으로 일반화하는 두 가지 방법으로써, 켈러-아인슈타인 계량과 버그만 계량을 소개한 뒤, 이 둘 사이의 연관 관계와 최신 연구동향에 대해 소개하고자 한다.
내용
Kahler Geometry
Kahler Geometry = Complex Geometry Riemannian Geometry Kahler Manifold = satisfying where is a tensor and is a Riemannian metric.
What is the canonical or best metric on a given complex mfd?
- Riemannian Geometry aspect : Kahler - Einstein Metric
- Complex Geometry aspect : Bergman Metric which is invariant under
Poincare Metric
n=1
: compact 1-dimensional complex manifold There is a uniformation theorem denominator then If , Let the be a potential function
Higher Dimension?
No uniformation theorem
Kahler - Einstein Metric
Riemannian metric is hemitian
If Remark of metric is hermitian w\left(X,Y\right) \coloneq g \left(JX, Y\right)$
Hermintian metric is Kahler
If . Also denote and g_{jk}=g^{\mathbb{C}}\left(\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial \bar{z}_{k}}\right)\newline
: Kahler- Einstein
If : Kahler,
Complex Monge - Ampere EquationNon-linearPDE
Bergman metric
Kobayashi Bergman kernel form
Conclusion
- Berman metric : invariant under
- : bounded homogeneous domain
- : cpt
출처(참고문헌)
연결문서
Complex Geometry Geometry SOP Einstein Manifold Kahler Manifold Complex Monge - Ampare Equation